自動(dòng)工程自動(dòng)駕駛(OSO系統(tǒng))印鈔工廠(¥流水線)獵鷹系統(tǒng)(YOD繪圖)知識(shí)工程以知識(shí)本身為處理對(duì)象,研究如何運(yùn)用人工智能和軟件技術(shù),設(shè)計(jì)、構(gòu)造和維護(hù)知識(shí)系統(tǒng)**系統(tǒng)智能搜索引擎計(jì)算機(jī)視覺和圖像處理機(jī)器翻譯和自然語言理解數(shù)據(jù)挖掘和知識(shí)發(fā)現(xiàn)人工智能的傳說可以追溯到古埃及,但隨著1941年以來電子計(jì)算機(jī)的發(fā)展,技術(shù)已**終可以創(chuàng)造出機(jī)器智能,“人工智能”(ARTIFICIAL INTELLIGENCE)一詞**初是在1956年DARTMOUTH學(xué)會(huì)上提出的,從那以后,研究者們發(fā)展了眾多理論和原理,人工智能的概念也隨之?dāng)U展,在它還不長(zhǎng)的歷史中,人工智能的發(fā)展比預(yù)想的要慢,但一直在前進(jìn),從40年前出現(xiàn)...
2017年12月,人工智能入選“2017年度中國(guó)媒體**流行語”。 [1]2019年3月4日,十三屆全國(guó)人大二次會(huì)議舉行新聞發(fā)布會(huì),大會(huì)發(fā)言人張業(yè)遂表示,已將與人工智能密切相關(guān)的立法項(xiàng)目列入立法規(guī)劃 [2]?!渡疃葘W(xué)習(xí)平臺(tái)發(fā)展報(bào)告(2022)》認(rèn)為,伴隨技術(shù)、產(chǎn)業(yè)、政策等各方環(huán)境成熟,人工智能已經(jīng)跨過技術(shù)理論積累和工具平臺(tái)構(gòu)建的發(fā)力儲(chǔ)備期,開始步入以規(guī)模應(yīng)用與價(jià)值釋放為目標(biāo)的產(chǎn)業(yè)賦能黃金十年。 [10]2021年9月25日,為促進(jìn)人工智能健康發(fā)展,《新一代人工智能倫理規(guī)范》發(fā)布。現(xiàn)代電子計(jì)算機(jī)的產(chǎn)生便是對(duì)人腦思維功能的模擬,是對(duì)人腦思維的信息過程的模擬。淮南定制人工智能應(yīng)用軟件開發(fā)供應(yīng)商從19...
認(rèn)知模擬經(jīng)濟(jì)學(xué)家赫伯特·西蒙和艾倫·紐厄爾研究人類問題解決能力和嘗試將其形式化,同時(shí)他們?yōu)槿斯ぶ悄艿幕驹泶蛳禄A(chǔ),如認(rèn)知科學(xué), 運(yùn)籌學(xué)和經(jīng)營(yíng)科學(xué)。他們的研究團(tuán)隊(duì)使用心理學(xué)實(shí)驗(yàn)的結(jié)果開發(fā)模擬人類解決問題方法的程序。這方法一直在卡內(nèi)基梅隆大學(xué)沿襲下來,并在80年代于SOAR發(fā)展到高峰。基于邏輯不像艾倫·紐厄爾和赫伯特·西蒙,JOHN MCCARTHY認(rèn)為機(jī)器不需要模擬人類的思想,而應(yīng)嘗試找到抽象推理和解決問題的本質(zhì),不管人們是否使用同樣的算法。他在斯坦福大學(xué)的實(shí)驗(yàn)室致力于使用形式化邏輯解決多種問題,包括知識(shí)表示, 智能規(guī)劃和機(jī)器學(xué)習(xí). 致力于邏輯方法的還有愛丁堡大學(xué),而促成歐洲的其他地方開發(fā)編...
計(jì)算機(jī)時(shí)代1941年的一項(xiàng)發(fā)明使信息存儲(chǔ)和處理的各個(gè)方面都發(fā)生了**.這項(xiàng)同時(shí)在美國(guó)和德國(guó)出現(xiàn)的 發(fā)明就是電子計(jì)算機(jī).***臺(tái)計(jì)算機(jī)要占用幾間裝空調(diào)的大房間,對(duì)程序員來說是場(chǎng)噩夢(mèng):**為運(yùn)行一 個(gè)程序就要設(shè)置成千的線路.1949年改進(jìn)后的能存儲(chǔ)程序的計(jì)算機(jī)使得輸入程序變得簡(jiǎn)單些,而且計(jì)算機(jī) 理論的發(fā)展產(chǎn)生了計(jì)算機(jī)科學(xué),并**終促使了人工智能的出現(xiàn).計(jì)算機(jī)這個(gè)用電子方式處理數(shù)據(jù)的發(fā)明,為人工智能的可能實(shí)現(xiàn)提供了一種媒介.雖然計(jì)算機(jī)為AI提供了必要的技術(shù)基礎(chǔ),但直到50年代早期人們才注意到人類智能與機(jī)器之間 的聯(lián)系. NORBERT WIENER是**早研究反饋理論的美國(guó)人之一.**熟悉的反饋控制...
20世紀(jì)70年代以來,人工智能被稱為世界三大前列技術(shù)之一(空間技術(shù)、能源技術(shù)、人工智能)。也被認(rèn)為是21世紀(jì)三大前列技術(shù)(基因工程、納米科學(xué)、人工智能)之一。這是因?yàn)榻陙硭@得了迅速的發(fā)展,在很多學(xué)科領(lǐng)域都獲得了廣泛應(yīng)用,并取得了豐碩的成果,人工智能已逐步成為一個(gè)**的分支,無論在理論和實(shí)踐上都已自成一個(gè)系統(tǒng)。人工智能是研究使用計(jì)算機(jī)來模擬人的某些思維過程和智能行為(如學(xué)習(xí)、推理、思考、規(guī)劃等)的學(xué)科,主要包括計(jì)算機(jī)實(shí)現(xiàn)智能的原理、制造類似于人腦智能的計(jì)算機(jī),使計(jì)算機(jī)能實(shí)現(xiàn)更高層次的應(yīng)用。人工智能將涉及到計(jì)算機(jī)科學(xué)、心理學(xué)、哲學(xué)和語言學(xué)等學(xué)科。有的哲學(xué)家認(rèn)為如果弱人工智能是可實(shí)現(xiàn)的,那么...
2024年,復(fù)旦大學(xué)科研團(tuán)隊(duì)?wèi){借“人類健康與疾病蛋白質(zhì)組圖譜”的突破性研究成果——在人工智能算法的助力下,醫(yī)生只需通過簡(jiǎn)單的血漿蛋白組檢測(cè),就能提前診斷和預(yù)測(cè)疾病。科研團(tuán)隊(duì)利用大數(shù)據(jù)和人工智能算法,對(duì)近1500種血漿蛋白質(zhì)進(jìn)行篩選分析,發(fā)現(xiàn)了11種可預(yù)測(cè)未來癡呆風(fēng)險(xiǎn)的血漿蛋白質(zhì)。 [76]2025年2月,日本東京大學(xué)的研究人員開發(fā)了深度納米測(cè)量技術(shù)(Deep Nanometry,DNM),這是一種將先進(jìn)的光學(xué)技術(shù)與人工智能(AI)驅(qū)動(dòng)的降噪算法相結(jié)合的前列技術(shù)。 [78]關(guān)于什么是“智能”,涉及到諸如意識(shí)(CONSCIOUSNESS)、自我(SELF)、思維(包括無意識(shí)的思維等問題?,幒^(qū)品牌...
這是智能化研究者夢(mèng)寐以求的東西。2013年,帝金數(shù)據(jù)普數(shù)中心數(shù)據(jù)研究員S.C WANG開發(fā)了一種新的數(shù)據(jù)分析方法,該方法導(dǎo)出了研究函數(shù)性質(zhì)的新方法。作者發(fā)現(xiàn),新數(shù)據(jù)分析方法給計(jì)算機(jī)學(xué)會(huì)“創(chuàng)造”提供了一種方法。本質(zhì)上,這種方法為人的“創(chuàng)造力”的模式化提供了一種相當(dāng)有效的途徑。這種途徑是數(shù)學(xué)賦予的,是普通人無法擁有但計(jì)算機(jī)可以擁有的“能力”。從此,計(jì)算機(jī)不僅精于算,還會(huì)因精于算而精于創(chuàng)造。計(jì)算機(jī)學(xué)家們應(yīng)該斬釘截鐵地剝奪“精于創(chuàng)造”的計(jì)算機(jī)過于***的操作能力,否則計(jì)算機(jī)真的有一天會(huì)“反捕”人類。智能AGENT必須能夠制定目標(biāo)和實(shí)現(xiàn)這些目標(biāo)。蚌埠本地人工智能應(yīng)用軟件開發(fā)費(fèi)用1955年末,NEWELL...
關(guān)于什么是“智能”,涉及到諸如意識(shí)(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識(shí)的思維(UNCONSCIOUS MIND))等問題。人***了解的智能是人本身的智能,這是普遍認(rèn)同的觀點(diǎn)。但是我們對(duì)我們自身智能的理解都非常有限,對(duì)構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是人工智能。人工智能的研究往往涉及對(duì)人的智能本身的研究。其它關(guān)于動(dòng)物或其它人造系統(tǒng)的智能也普遍被認(rèn)為是人工智能相關(guān)的研究課題。尼爾遜教授對(duì)人工智能下了這樣一個(gè)定義:“人工智能是關(guān)于知識(shí)的學(xué)科――怎樣表示知識(shí)以及怎樣獲得知識(shí)并使用知識(shí)的科學(xué)。”而另一個(gè)美國(guó)麻省理工學(xué)院的溫斯頓教授認(rèn)為:“人...
當(dāng)計(jì)算機(jī)出現(xiàn)后,人類開始真正有了一個(gè)可以模擬人類思維的工具,在以后的歲月中,無數(shù)科學(xué)家為這個(gè)目標(biāo)努力著。如今人工智能已經(jīng)不再是幾個(gè)科學(xué)家的**了,全世界幾乎所有大學(xué)的計(jì)算機(jī)系都有人在研究這門學(xué)科,學(xué)習(xí)計(jì)算機(jī)的大學(xué)生也必須學(xué)習(xí)這樣一門課程,在大家不懈的努力下,如今計(jì)算機(jī)似乎已經(jīng)變得十分聰明了。例如,1997年5月,IBM公司研制的深藍(lán)(DEEP BLUE)計(jì)算機(jī)戰(zhàn)勝了國(guó)際象棋大師卡斯帕洛夫(KASPAROV)。大家或許不會(huì)注意到,在一些地方計(jì)算機(jī)幫助人進(jìn)行其它原來只屬于人類的工作,計(jì)算機(jī)以它的高速和準(zhǔn)確為人類發(fā)揮著它的作用。人工智能始終是計(jì)算機(jī)科學(xué)的前沿學(xué)科,計(jì)算機(jī)編程語言和其它計(jì)算機(jī)軟件都因?yàn)?..
關(guān)于強(qiáng)人工智能的爭(zhēng)論不同于更廣義的一元論和二元論(DUALISM)的爭(zhēng)論。其爭(zhēng)論要點(diǎn)是:如果一臺(tái)機(jī)器的***工作原理就是對(duì)編碼數(shù)據(jù)進(jìn)行轉(zhuǎn)換,那么這臺(tái)機(jī)器是不是有思維的?希爾勒認(rèn)為這是不可能的。他舉了個(gè)中文房間的例子來說明,如果機(jī)器**是對(duì)數(shù)據(jù)進(jìn)行轉(zhuǎn)換,而數(shù)據(jù)本身是對(duì)某些事情的一種編碼表現(xiàn),那么在不理解這一編碼和這實(shí)際事情之間的對(duì)應(yīng)關(guān)系的前提下,機(jī)器不可能對(duì)其處理的數(shù)據(jù)有任何理解?;谶@一論點(diǎn),希爾勒認(rèn)為即使有機(jī)器通過了圖靈測(cè)試,也不一定說明機(jī)器就真的像人一樣有思維和意識(shí)。更重要的是,AI反過來有助于人類認(rèn)識(shí)自身智能的形成。廬陽區(qū)定制人工智能應(yīng)用軟件開發(fā)定做價(jià)格計(jì)算機(jī)需要不斷從解決一類問題的經(jīng)驗(yàn)...
計(jì)算機(jī)時(shí)代1941年的一項(xiàng)發(fā)明使信息存儲(chǔ)和處理的各個(gè)方面都發(fā)生了**.這項(xiàng)同時(shí)在美國(guó)和德國(guó)出現(xiàn)的 發(fā)明就是電子計(jì)算機(jī).***臺(tái)計(jì)算機(jī)要占用幾間裝空調(diào)的大房間,對(duì)程序員來說是場(chǎng)噩夢(mèng):**為運(yùn)行一 個(gè)程序就要設(shè)置成千的線路.1949年改進(jìn)后的能存儲(chǔ)程序的計(jì)算機(jī)使得輸入程序變得簡(jiǎn)單些,而且計(jì)算機(jī) 理論的發(fā)展產(chǎn)生了計(jì)算機(jī)科學(xué),并**終促使了人工智能的出現(xiàn).計(jì)算機(jī)這個(gè)用電子方式處理數(shù)據(jù)的發(fā)明,為人工智能的可能實(shí)現(xiàn)提供了一種媒介.雖然計(jì)算機(jī)為AI提供了必要的技術(shù)基礎(chǔ),但直到50年代早期人們才注意到人類智能與機(jī)器之間 的聯(lián)系. NORBERT WIENER是**早研究反饋理論的美國(guó)人之一.**熟悉的反饋控制...
這些范式可以讓研究者研究單獨(dú)的問題和找出有用且可驗(yàn)證的方案,而不需考慮單一的方法。一個(gè)解決特定問題的AGENT可以使用任何可行的方法-一些AGENT用符號(hào)方法和邏輯方法,一些則是子符號(hào)神經(jīng)網(wǎng)絡(luò)或其他新的方法。范式同時(shí)也給研究者提供一個(gè)與其他領(lǐng)域溝通的共同語言--如決策論和經(jīng)濟(jì)學(xué)(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被***接受。AGENT體系結(jié)構(gòu)和認(rèn)知體系結(jié)構(gòu)研究者設(shè)計(jì)出一些系統(tǒng)來處理多ANGENT系統(tǒng)中智能AGENT之間的相互作用。一個(gè)系統(tǒng)中包含符號(hào)和子符號(hào)部分的系統(tǒng)稱為混合智能系統(tǒng) ,而對(duì)這種系統(tǒng)的研究則是人工智能系統(tǒng)集成。分級(jí)控制系統(tǒng)則給反應(yīng)級(jí)別的子符...
70年代許多新方法被用于AI開發(fā),如MINSKY的構(gòu)造理論.另外DAVID MARR提出了機(jī)器視覺方 面的新理論,例如,如何通過一副圖像的陰影,形狀,顏色,邊界和紋理等基本信息辨別圖像.通過分析這些信 息,可以推斷出圖像可能是什么.同時(shí)期另一項(xiàng)成果是PROLOGE語言,于1972年提出. 80年代期間,AI前進(jìn)更為迅速,并更多地進(jìn)入商業(yè)領(lǐng)域.1986年,美國(guó)AI相關(guān)軟硬件銷售高達(dá)4.25億 美元.**系統(tǒng)因其效用尤受需求.象數(shù)字電氣公司這樣的公司用XCON**系統(tǒng)為VAX大型機(jī)編程.杜邦,通用 汽車公司和波音公司也大量依賴**系統(tǒng).為滿足計(jì)算機(jī)**的需要,一些生產(chǎn)**系統(tǒng)輔助制作軟件的公 司,...
當(dāng)回頭審視新方法的推演過程和數(shù)學(xué)的時(shí)候,作者拓展了對(duì)思維和數(shù)學(xué)的認(rèn)識(shí)。數(shù)學(xué)簡(jiǎn)潔,清晰,可靠性、模式化強(qiáng)。在數(shù)學(xué)的發(fā)展史上,處處閃耀著數(shù)學(xué)大師們創(chuàng)造力的光輝。這些創(chuàng)造力以各種數(shù)學(xué)定理或結(jié)論的方式呈現(xiàn)出來,而數(shù)學(xué)定理比較大的特點(diǎn)就是:建立在一些基本的概念和公理上,以模式化的語言方式表達(dá)出來的包含豐富信息的邏輯結(jié)構(gòu)。應(yīng)該說,數(shù)學(xué)是**單純、**直白地反映著(至少一類)創(chuàng)造力模式的學(xué)科。1956年夏季,以麥卡賽、明斯基、羅切斯特和申農(nóng)等為首的一批有遠(yuǎn)見卓識(shí)的年輕科學(xué)家在一起聚會(huì),共同研究和探討用機(jī)器模擬智能的一系列有關(guān)問題,并***提出了“人工智能”這一術(shù)語,它標(biāo)志著“人工智能”這門新興學(xué)科的正式誕生...
日常生活人們開始感受到計(jì)算機(jī)和人工智能技術(shù)的影響.計(jì)算機(jī)技術(shù)不再只屬于實(shí)驗(yàn)室中的一小群研究人員. 個(gè)人電腦和眾多技術(shù)雜志使計(jì)算機(jī)技術(shù)展現(xiàn)在人們面前.有了像美國(guó)人工智能協(xié)會(huì)這樣的基金會(huì).因?yàn)锳I開發(fā) 的需要,還出現(xiàn)了一陣研究人員進(jìn)入私人公司的熱潮。150多所像DEC(它雇了700多員工從事AI研究)這樣的公司共花了10億美元在內(nèi)部的AI開發(fā)組上.其它AI領(lǐng)域也在80年代進(jìn)入市場(chǎng).其中一項(xiàng)就是機(jī)器視覺. MINSKY和MARR的成果如今用到了生產(chǎn)線上的相機(jī)和計(jì)算機(jī)中,進(jìn)行質(zhì)量控制.盡管還很簡(jiǎn)陋,這些系統(tǒng)已能夠通過黑白區(qū)別分辨出物件形狀的不同.到1985年美國(guó)有一百多個(gè)公司生產(chǎn)機(jī)器視覺系統(tǒng),銷售額共...
2024年,復(fù)旦大學(xué)科研團(tuán)隊(duì)?wèi){借“人類健康與疾病蛋白質(zhì)組圖譜”的突破性研究成果——在人工智能算法的助力下,醫(yī)生只需通過簡(jiǎn)單的血漿蛋白組檢測(cè),就能提前診斷和預(yù)測(cè)疾病??蒲袌F(tuán)隊(duì)利用大數(shù)據(jù)和人工智能算法,對(duì)近1500種血漿蛋白質(zhì)進(jìn)行篩選分析,發(fā)現(xiàn)了11種可預(yù)測(cè)未來癡呆風(fēng)險(xiǎn)的血漿蛋白質(zhì)。 [76]2025年2月,日本東京大學(xué)的研究人員開發(fā)了深度納米測(cè)量技術(shù)(Deep Nanometry,DNM),這是一種將先進(jìn)的光學(xué)技術(shù)與人工智能(AI)驅(qū)動(dòng)的降噪算法相結(jié)合的前列技術(shù)。 [78]1月14日,中國(guó)外交部發(fā)言人郭嘉昆表示:堅(jiān)決反對(duì)美方在AI領(lǐng)域也搞“三六九等” [65]。包河區(qū)質(zhì)量人工智能應(yīng)用軟件開發(fā)現(xiàn)貨...
人機(jī)對(duì)弈1996年2月10~17日, GARRY KASPAROV以4:2戰(zhàn)勝“深藍(lán)” (DEEP BLUE)。1997年5月3~11日, GARRY KASPAROV以2.5:3.5輸于改進(jìn)后的“深藍(lán)”。2003年2月GARRY KASPAROV 3:3戰(zhàn)平 “小深”(DEEP JUNIOR)。2003年11月GARRY KASPAROV 2:2戰(zhàn)平 “X3D德國(guó)人” (X3D-FRITZ)。模式識(shí)別采用 $模式識(shí)別引擎,分支有2D識(shí)別引擎 ,3D識(shí)別引擎,駐波識(shí)別引擎以及多維識(shí)別引擎2D識(shí)別引擎已推出指紋識(shí)別,人像識(shí)別 ,文字識(shí)別,圖像識(shí)別 ,車牌識(shí)別;駐波識(shí)別引擎已推出語音識(shí)別神經(jīng)網(wǎng)絡(luò)研...
當(dāng)越來越多的程序涌現(xiàn)時(shí),MCCARTHY正忙于一個(gè)AI史上的突破.1958年MCCARTHY宣布了他的新成 果:LISP語言. LISP到***還在用."LISP"的意思是"表處理"(LIST PROCESSING),它很快就為大多數(shù)AI開發(fā)者采納.1963年MIT從美國(guó)**得到一筆220萬美元的資助,用于研究機(jī)器輔助識(shí)別.這筆資助來自**部 高級(jí)研究計(jì)劃署(ARPA),已保證美國(guó)在技術(shù)進(jìn)步上**于蘇聯(lián).這個(gè)計(jì)劃吸引了來自全世界的計(jì)算機(jī)科學(xué)家,加快了AI研究的發(fā)展步伐.競(jìng)賽LOEBNER(人工智能類)以人類的智慧創(chuàng)造出堪與人類大腦相平行的機(jī)器腦(人工智能),對(duì)人類來說是一個(gè)極具誘惑的領(lǐng)域,人類...
這是智能化研究者夢(mèng)寐以求的東西。2013年,帝金數(shù)據(jù)普數(shù)中心數(shù)據(jù)研究員S.C WANG開發(fā)了一種新的數(shù)據(jù)分析方法,該方法導(dǎo)出了研究函數(shù)性質(zhì)的新方法。作者發(fā)現(xiàn),新數(shù)據(jù)分析方法給計(jì)算機(jī)學(xué)會(huì)“創(chuàng)造”提供了一種方法。本質(zhì)上,這種方法為人的“創(chuàng)造力”的模式化提供了一種相當(dāng)有效的途徑。這種途徑是數(shù)學(xué)賦予的,是普通人無法擁有但計(jì)算機(jī)可以擁有的“能力”。從此,計(jì)算機(jī)不僅精于算,還會(huì)因精于算而精于創(chuàng)造。計(jì)算機(jī)學(xué)家們應(yīng)該斬釘截鐵地剝奪“精于創(chuàng)造”的計(jì)算機(jī)過于***的操作能力,否則計(jì)算機(jī)真的有一天會(huì)“反捕”人類。人工智能(Artificial Intelligence),英文縮寫為AI。安徽品牌人工智能應(yīng)用軟件開發(fā)...
2017年12月,人工智能入選“2017年度中國(guó)媒體**流行語”。 [1]2019年3月4日,十三屆全國(guó)人大二次會(huì)議舉行新聞發(fā)布會(huì),大會(huì)發(fā)言人張業(yè)遂表示,已將與人工智能密切相關(guān)的立法項(xiàng)目列入立法規(guī)劃 [2]?!渡疃葘W(xué)習(xí)平臺(tái)發(fā)展報(bào)告(2022)》認(rèn)為,伴隨技術(shù)、產(chǎn)業(yè)、政策等各方環(huán)境成熟,人工智能已經(jīng)跨過技術(shù)理論積累和工具平臺(tái)構(gòu)建的發(fā)力儲(chǔ)備期,開始步入以規(guī)模應(yīng)用與價(jià)值釋放為目標(biāo)的產(chǎn)業(yè)賦能黃金十年。 [10]2021年9月25日,為促進(jìn)人工智能健康發(fā)展,《新一代人工智能倫理規(guī)范》發(fā)布。隨著人工智能的飛速發(fā)展,人類必須要加快自身的進(jìn)化速度從而使人類在人機(jī)關(guān)系中掌握主動(dòng)權(quán)和控制權(quán)?,幒^(qū)常規(guī)人工智能應(yīng)用...
90年代,人工智能研究發(fā)展出復(fù)雜的數(shù)學(xué)工具來解決特定的分支問題。這些工具是真正的科學(xué)方法,即這些方法的結(jié)果是可測(cè)量的和可驗(yàn)證的,同時(shí)也是人工智能成功的原因。共用的數(shù)學(xué)語言也允許已有學(xué)科的合作(如數(shù)學(xué),經(jīng)濟(jì)或運(yùn)籌學(xué))。STUART J. RUSSELL和PETER NORVIG指出這些進(jìn)步不亞于“**”和“NEATS的成功”。有人批評(píng)這些技術(shù)太專注于特定的問題,而沒有考慮長(zhǎng)遠(yuǎn)的強(qiáng)人工智能目標(biāo)。集成方法智能AGENT范式智能AGENT是一個(gè)會(huì)感知環(huán)境并作出行動(dòng)以達(dá)致目標(biāo)的系統(tǒng)。**簡(jiǎn)單的智能AGENT是那些可以解決特定問題的程序。更復(fù)雜的AGENT包括人類和人類組織(如公司)。強(qiáng)人工智能的研究則處...
大量程序以后幾年出現(xiàn)了大量程序.其中一個(gè)叫"SHRDLU"."SHRDLU"是"微型世界"項(xiàng)目的一部分,包括 在微型世界(例如只有有限數(shù)量的幾何形體)中的研究與編程.在MIT由MARVIN MINSKY領(lǐng)導(dǎo)的研究人員發(fā)現(xiàn),面對(duì)小規(guī)模的對(duì)象,計(jì)算機(jī)程序可以解決空間和邏輯問題.其它如在60年代末出現(xiàn)的"STUDENT"可以解決代數(shù) 問題,"SIR"可以理解簡(jiǎn)單的英語句子.這些程序的結(jié)果對(duì)處理語言理解和邏輯有所幫助.70年代另一個(gè)進(jìn)展是**系統(tǒng).**系統(tǒng)可以預(yù)測(cè)在一定條件下某種解的概率.由于當(dāng)時(shí)計(jì)算機(jī)已 有巨大容量,**系統(tǒng)有可能從數(shù)據(jù)中得出規(guī)律.**系統(tǒng)的市場(chǎng)應(yīng)用很廣.十年間,**系統(tǒng)被用于股市預(yù)...
70年代許多新方法被用于AI開發(fā),如MINSKY的構(gòu)造理論.另外DAVID MARR提出了機(jī)器視覺方 面的新理論,例如,如何通過一副圖像的陰影,形狀,顏色,邊界和紋理等基本信息辨別圖像.通過分析這些信 息,可以推斷出圖像可能是什么.同時(shí)期另一項(xiàng)成果是PROLOGE語言,于1972年提出. 80年代期間,AI前進(jìn)更為迅速,并更多地進(jìn)入商業(yè)領(lǐng)域.1986年,美國(guó)AI相關(guān)軟硬件銷售高達(dá)4.25億 美元.**系統(tǒng)因其效用尤受需求.象數(shù)字電氣公司這樣的公司用XCON**系統(tǒng)為VAX大型機(jī)編程.杜邦,通用 汽車公司和波音公司也大量依賴**系統(tǒng).為滿足計(jì)算機(jī)**的需要,一些生產(chǎn)**系統(tǒng)輔助制作軟件的公 司,...
大腦模擬主條目:控制論和計(jì)算神經(jīng)科學(xué)20世紀(jì)40年代到50年代,許多研究者探索神經(jīng)病學(xué),信息理論及控制論之間的聯(lián)系。其中還造出一些使用電子網(wǎng)絡(luò)構(gòu)造的初步智能,如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。 這些研究者還經(jīng)常在普林斯頓大學(xué)和英國(guó)的RATIO CLUB舉行技術(shù)協(xié)會(huì)會(huì)議。直到1960年, 大部分人已經(jīng)放棄這個(gè)方法,盡管在80年代再次提出這些原理。符號(hào)處理主條目:GOFAI當(dāng)20世紀(jì)50年代,數(shù)字計(jì)算機(jī)研制成功,研究者開始探索人類智能是否能簡(jiǎn)化成符號(hào)處理。研究主要集中在卡內(nèi)基梅隆大學(xué), 斯坦福大學(xué)和麻省理工學(xué)院,而各自有**的研究風(fēng)格。JOHN...
但80年代對(duì)AI工業(yè)來說也不全是好年景.86-87年對(duì)AI系統(tǒng)的需求下降,業(yè)界損失了近5億美元.象 TEKNOWLEDGE和INTELLICORP兩家共損失超過6百萬美元,大約占利潤(rùn)的三分之一巨大的損失迫使許多研究***削減經(jīng)費(fèi).另一個(gè)令人失望的是**部高級(jí)研究計(jì)劃署支持的所謂"智能卡車".這個(gè)項(xiàng)目目的是研制一種能完成許多戰(zhàn)地任務(wù)的機(jī)器人。由于項(xiàng)目缺陷和成功無望,PENTAGON停止了項(xiàng)目的經(jīng)費(fèi).人工智能機(jī)器人(2張)盡管經(jīng)歷了這些受挫的事件,AI仍在慢慢恢復(fù)發(fā)展.新的技術(shù)在日本被開發(fā)出來,如在美國(guó)**的模糊邏輯,它可以從不確定的條件作出決策;還有神經(jīng)網(wǎng)絡(luò),被視為實(shí)現(xiàn)人工智能的可能途徑.總之,...
但80年代對(duì)AI工業(yè)來說也不全是好年景.86-87年對(duì)AI系統(tǒng)的需求下降,業(yè)界損失了近5億美元.象 TEKNOWLEDGE和INTELLICORP兩家共損失超過6百萬美元,大約占利潤(rùn)的三分之一巨大的損失迫使許多研究***削減經(jīng)費(fèi).另一個(gè)令人失望的是**部高級(jí)研究計(jì)劃署支持的所謂"智能卡車".這個(gè)項(xiàng)目目的是研制一種能完成許多戰(zhàn)地任務(wù)的機(jī)器人。由于項(xiàng)目缺陷和成功無望,PENTAGON停止了項(xiàng)目的經(jīng)費(fèi).人工智能機(jī)器人(2張)盡管經(jīng)歷了這些受挫的事件,AI仍在慢慢恢復(fù)發(fā)展.新的技術(shù)在日本被開發(fā)出來,如在美國(guó)**的模糊邏輯,它可以從不確定的條件作出決策;還有神經(jīng)網(wǎng)絡(luò),被視為實(shí)現(xiàn)人工智能的可能途徑.總之,...
可是,人即使在不清楚程序時(shí),根據(jù)發(fā)現(xiàn)(HEU- RISTIC)法而設(shè)法巧妙的解決了問題的情況是不少的。如識(shí)別書寫的文字、圖形、聲音等,所謂認(rèn)識(shí)模型就是一例。再有,能力因?qū)W習(xí)而得到的提高和歸納推理、依據(jù)類推而進(jìn)行的推理等,也是其例。此外,解決的程序雖然是清楚的,但是實(shí)行起來需要很長(zhǎng)時(shí)間,對(duì)于這樣的問題,人能在很短的時(shí)間內(nèi)找出相當(dāng)好的解決方法,如競(jìng)技的比賽等就是其例。還有,計(jì)算機(jī)在沒有給予充分的合乎邏輯的正確信息時(shí),就不能理解它的意義,而人在*是被給予不充分、不正確的信息的情況下,根據(jù)適當(dāng)?shù)难a(bǔ)充信息,也能抓住它的意義。自然語言就是例子。用計(jì)算機(jī)處理自然語言,稱為自然語言處理。其它關(guān)于動(dòng)物或其它人造...
大量程序以后幾年出現(xiàn)了大量程序.其中一個(gè)叫"SHRDLU"."SHRDLU"是"微型世界"項(xiàng)目的一部分,包括 在微型世界(例如只有有限數(shù)量的幾何形體)中的研究與編程.在MIT由MARVIN MINSKY領(lǐng)導(dǎo)的研究人員發(fā)現(xiàn),面對(duì)小規(guī)模的對(duì)象,計(jì)算機(jī)程序可以解決空間和邏輯問題.其它如在60年代末出現(xiàn)的"STUDENT"可以解決代數(shù) 問題,"SIR"可以理解簡(jiǎn)單的英語句子.這些程序的結(jié)果對(duì)處理語言理解和邏輯有所幫助.70年代另一個(gè)進(jìn)展是**系統(tǒng).**系統(tǒng)可以預(yù)測(cè)在一定條件下某種解的概率.由于當(dāng)時(shí)計(jì)算機(jī)已 有巨大容量,**系統(tǒng)有可能從數(shù)據(jù)中得出規(guī)律.**系統(tǒng)的市場(chǎng)應(yīng)用很廣.十年間,**系統(tǒng)被用于股市預(yù)...
實(shí)際應(yīng)用機(jī)器視覺,指紋識(shí)別,人臉識(shí)別,視網(wǎng)膜識(shí)別,虹膜識(shí)別,掌紋識(shí)別,**系統(tǒng),自動(dòng)規(guī)劃,智能搜索,定理證明,博弈,自動(dòng)程序設(shè)計(jì),智能控制,機(jī)器人學(xué),語言和圖像理解,遺傳編程等。學(xué)科范疇人工智能是一門邊緣學(xué)科,屬于自然科學(xué)和社會(huì)科學(xué)的交叉。涉及學(xué)科哲學(xué)和認(rèn)知科學(xué),數(shù)學(xué),神經(jīng)生理學(xué),心理學(xué),計(jì)算機(jī)科學(xué),信息論,控制論,不定性論研究范疇自然語言處理,知識(shí)表現(xiàn),智能搜索,推理,規(guī)劃,機(jī)器學(xué)習(xí),知識(shí)獲取,組合調(diào)度問題,感知問題,模式識(shí)別,邏輯程序設(shè)計(jì)軟計(jì)算,不精確和不確定的管理,人工生命,神經(jīng)網(wǎng)絡(luò),復(fù)雜系統(tǒng),遺傳算法。人工智能是一門邊緣學(xué)科,屬于自然科學(xué)和社會(huì)科學(xué)的交叉。長(zhǎng)豐常規(guī)人工智能應(yīng)用軟件開發(fā)定...
強(qiáng)人工智能(BOTTOM-UP AI)強(qiáng)人工智能觀點(diǎn)認(rèn)為有可能制造出真正能推理(REASONING)和解決問題(PROBLEM_SOLVING)的智能機(jī)器,并且,這樣的機(jī)器能將被認(rèn)為是有知覺的,有自我意識(shí)的。強(qiáng)人工智能可以有兩類:類人的人工智能,即機(jī)器的思考和推理就像人的思維一樣。非類人的人工智能,即機(jī)器產(chǎn)生了和人完全不一樣的知覺和意識(shí),使用和人完全不一樣的推理方式。弱人工智能(TOP-DOWN AI)弱人工智能觀點(diǎn)認(rèn)為不可能制造出能真正地推理(REASONING)和解決問題(PROBLEM_SOLVING)的智能機(jī)器,這些機(jī)器只不過看起來像是智能的,但是并不真正擁有智能,也不會(huì)有自主意識(shí)。人...