氧化石墨烯同時具有熒光發(fā)射和熒光淬滅特性,廣義而言,其自身已經(jīng)可以作為一種傳感材料,在生物、醫(yī)學(xué)領(lǐng)域的應(yīng)用充分說明了這一點(diǎn)。經(jīng)過功能化的氧化石墨烯/還原氧化石墨烯在更加***的領(lǐng)域內(nèi)得到了應(yīng)用,特別在光探測、光學(xué)成像、新型光源、非線性器件等光電傳感相關(guān)領(lǐng)域有著豐富的應(yīng)用。光電探測器是石墨烯問世后**早應(yīng)用的領(lǐng)域之一。2009年,Xia等利用機(jī)械剝離的石墨烯制備出了***個石墨烯光電探測器(MGPD)[2],如圖9.6,以1-3層石墨烯作為有源層,Ti/Pd/Au作源漏電極,Si作為背柵極并在其上沉淀300nm厚的SiO2,在電極和石墨烯的接觸面上因為功函數(shù)的不同,能帶會發(fā)生彎曲并產(chǎn)生內(nèi)建電場。隨著含氧基團(tuán)的去除,氧化石墨烯(GO)在可見光波段的的光吸收率迅速上升。黑龍江進(jìn)口氧化石墨
由于較低的毒性和良好的生物相容性,石墨烯材料在細(xì)胞成像方面**了一股研究熱潮。石墨烯及其衍生物本身具有特殊的平面結(jié)構(gòu)和光學(xué)性質(zhì),或者經(jīng)過熒光染料分子標(biāo)記之后,可用于體外細(xì)胞與***光學(xué)成像[63-66],使其在**顯像和***方面具有很大的應(yīng)用前景。Dai課題組[67]***利用納米尺寸的聚乙二醇功能化氧化石墨烯(GO-PEG)的近紅外發(fā)光性質(zhì)用于細(xì)胞成像。他們將抗體利妥昔單抗(anti-CD20)與納米GO-PEG共價結(jié)合形成納米GO-PEG-anti-CD20,然后將納米GO-PEG和納米GO-PEG-anti-CD20與B細(xì)胞或T細(xì)胞在培養(yǎng)液中4℃培養(yǎng)1h,培養(yǎng)液中納米GO-PEG的濃度大約為0.7mg/ml,結(jié)果發(fā)現(xiàn)B細(xì)胞淋巴瘤具有強(qiáng)熒光,而T淋巴母細(xì)胞的熒光強(qiáng)度則很弱。另外,通過對GO進(jìn)行80℃熱處理17天后,再利用200W的超聲對GO溶液處理2h,得到的GO在紫外光(266–340nm)的照射下顯示出藍(lán)色熒光。新型氧化石墨廠家報價氧化石墨烯的表面官能團(tuán)與水中的金屬離子反應(yīng)形成復(fù)雜的絡(luò)合物。
(1)將GO作為熒光共振能量轉(zhuǎn)移的受體,構(gòu)建熒光共振能量轉(zhuǎn)移型氧化石墨烯生物傳感器,用于檢測各種生物分子。(2)可以將一些抗體鍵合在GO表面,構(gòu)建成抗體型氧化石墨烯傳感器,通常是將GO作為熒光共振能量轉(zhuǎn)移或化學(xué)發(fā)光共振能量轉(zhuǎn)移的受體,以此來檢測抗原物質(zhì);或者利用GO比表面積較大能結(jié)合更多抗體的特點(diǎn),將檢測信號進(jìn)行進(jìn)一步放大。(3)構(gòu)建多肽型氧化石墨烯傳感器。因為GO是一種邊緣含有親水基團(tuán)(-COOH,-OH及其他含氧基團(tuán))而基底具有高疏水性的兩性物質(zhì),當(dāng)多肽與GO孵育時,多肽的芳環(huán)和其他疏水性殘基與GO的疏水性基底堆積,同時二者部分殘基之間也會存在靜電作用,這樣多肽組裝在GO上形成了多肽型氧化石墨烯傳感器。當(dāng)多肽被熒光基團(tuán)標(biāo)記時,二者之間發(fā)生熒光共振能量轉(zhuǎn)移后,GO使熒光發(fā)生猝滅。
氧化石墨烯因獨(dú)特的結(jié)構(gòu)和性質(zhì)受到了人們的***關(guān)注,其生物相容性的研究已經(jīng)積累了一定的研究基礎(chǔ),但氧化石墨烯在實際應(yīng)用中仍然面臨很多困難和挑戰(zhàn)。首先,氧化石墨烯制備方法的多樣性和生物系統(tǒng)的復(fù)雜性,會***影響其在體內(nèi)外的生物相容性,導(dǎo)致研究結(jié)果的不一致,因此氧化石墨烯的生物相容性問題不能簡單歸納得出結(jié)論,需要綜合多方面的因素進(jìn)行深入研究。其次,氧化石墨烯的***活性又取決于時間和本身的濃度,其***機(jī)理需要進(jìn)一步的研究。***,氧化石墨烯對機(jī)體的長期毒性以及氧化石墨烯進(jìn)入細(xì)胞的機(jī)制、與細(xì)胞之間相互作用的機(jī)理、細(xì)胞/體內(nèi)代謝途徑等尚不清晰。這些問題關(guān)乎氧化石墨烯在生物醫(yī)學(xué)領(lǐng)域應(yīng)用中的安全問題和環(huán)境風(fēng)險評價,需要研究者們不斷地研究和探索。在用氧化還原法將石墨剝離為石墨烯的工業(yè)化生產(chǎn)過程中,得到的石墨烯微片富含多種含氧官能團(tuán)。
所采用的石墨原料片徑大小、純度高低等以及合成GO的方法不同,因此導(dǎo)致所合成出來的GO片的大小、片層厚度、氧化程度(含氧量)、表面電荷和表面所帶官能團(tuán)等不同。GO的生物毒性除了有濃度依賴性,還會因GO原料的不同而呈現(xiàn)出毒性數(shù)據(jù)的多樣性,甚至結(jié)論相互矛盾[2-9]。此外,GO可能與毒性測試中的試劑相互作用,從而影響細(xì)胞活性試驗數(shù)據(jù)的有效性,使其產(chǎn)生假陽性結(jié)果。如:Macosko與其合作者[10]的研究發(fā)現(xiàn),在細(xì)胞活性試驗中利用四甲基偶氮唑鹽(MTT)試劑與GO作用,GO的存在可以減少藍(lán)色產(chǎn)物的形成。因為在活細(xì)胞中,當(dāng)MTT減少時就說明有同一種顏色產(chǎn)物的生成。因此,基于MTT法試驗未能體現(xiàn)出GO的細(xì)胞毒性。但是他們利用另一種水溶性的四唑基試劑——WST-8(臺酚藍(lán)除外),就能對活細(xì)胞和死細(xì)胞的數(shù)量進(jìn)行精確的評估。GO成為制作傳感器極好的基本材料。無污染氧化石墨有哪些
關(guān)于GO與水泥基復(fù)合材料的作用機(jī)制,研究者也有不同的觀點(diǎn),目前仍沒有定論。黑龍江進(jìn)口氧化石墨
光學(xué)材料的某些非線性性質(zhì)是實現(xiàn)高性能集成光子器件的關(guān)鍵。光子芯片的許多重要功能,如全光開關(guān),信號再生,超快通信都離不開它。找尋一種具有超高三階非線性,并且易于加工各種功能性微納結(jié)構(gòu)的材料是眾多的光學(xué)科研工作者的夢想,也是成功研制超高性能全光芯片的必由之路。超快泵浦探針光譜表明,重度功能化的具有較大SP3區(qū)域的GO材料在高激發(fā)強(qiáng)度下可以出現(xiàn)飽和吸收、雙光子吸收和多光子吸收[6][50][51][52],這種效應(yīng)歸因于在SP3結(jié)構(gòu)域的光子中存在較大的帶隙。相反,在具有較小帶隙的SP2域中的*出現(xiàn)單光子吸收。石墨烯在飛秒脈沖激發(fā)下具有飽和吸收[52],而氧化石墨烯在低能量下為飽和吸收,高能量下則具有反飽和吸收[51]。因此,通過控制GO氧化/還原的程度,實現(xiàn)SP2域到SP3域的比例調(diào)控,可以調(diào)整GO的非線性光學(xué)性質(zhì),這對于高次諧波的產(chǎn)生與應(yīng)用是非常重要的。黑龍江進(jìn)口氧化石墨