DC/DC開關控制器的MOSFET選擇是一個復雜的過程。只考慮MOSFET的額定電壓和電流并不足以選擇到合適的MOSFET。要想讓MOSFET維持在規(guī)定范圍以內(nèi),必須在低柵極電荷和低導通電阻之間取得平衡。在多負載電源系統(tǒng)中,這種情況會變得更加復雜。選擇FET時需要考慮的因素包括額定電壓、環(huán)境溫度、開關頻率、控制器驅動能力和散熱組件面積。關鍵問題是,如果功耗過高且散熱不足,則FET可能會過熱起火。我們可以利用封裝/散熱組件ThetaJA或者熱敏電阻、FET功耗和環(huán)境溫度估算某個FET的結溫。MOSFET結構:為了改善某些參數(shù)的特性,如提高工作電流、提高工作電壓特性等有不同的結構及工藝。西安低壓N+PMOSFET設計
MOSFET在概念上屬于“絕緣柵極場效晶體管”(Insulated-Gate Field Effect Transistor,IGFET),而IGFET的柵極絕緣層有可能是其他物質(zhì)而非MOSFET使用的氧化層。有些人在提到擁有多晶硅柵極的場效晶體管元件時比較喜歡用IGFET,但是這些IGFET多半指的是MOSFET。MOSFET里的氧化層位于其通道上方,依照其操作電壓的不同,這層氧化物的厚度至少有數(shù)十至數(shù)百埃(Å)不等,通常材料是二氧化硅(silicon dioxide,SiO2),不過有些新的進階制程已經(jīng)可以使用如氮氧化硅(silicon oxynitride,SiON)做為氧化層之用。南通低壓N+PMOSFET晶體管MOSFET的重要部位有哪些?
雙柵極MOSFET雙柵極(dual-gate)MOSFET通常用在射頻(Radio Frequency,RF)集成電路中,這種MOSFET的兩個柵極都可以控制電流大小。在射頻電路的應用上,雙柵極MOSFET的第二個柵極大多數(shù)用來做增益、混頻器或是頻率轉換的控制。耗盡型MOSFET一般而言,耗盡型(depletion mode)MOSFET比前述的增強型(enhancement mode)MOSFET少見。耗盡型MOSFET在制造過程中改變摻雜到通道的雜質(zhì)濃度,使得這種MOSFET的柵極就算沒有加電壓,通道仍然存在。如果想要關閉通道,則必須在柵極施加負電壓。耗盡型MOSFET 的應用是在“常閉型”(normally-off)的開關,而相對的,加強式MOSFET則用在“常開型”(normally-on)的開關上。
MOSFET的應用:數(shù)字科技的進步,如微處理器運算效能不斷提升,帶給深入研發(fā)新一代MOSFET更多的動力,這也使得MOSFET本身的操作速度越來越快,幾乎成為各種半導體主動元件中極快的一種。MOSFET在數(shù)字信號處理上較主要的成功來自CMOS邏輯電路的發(fā)明,這種結構的好處是理論上不會有靜態(tài)的功率損耗,只有在邏輯門(logic gate)的切換動作時才有電流通過。CMOS邏輯門較基本的成員是CMOS反相器(inverter),而所有CMOS邏輯門的基本操作都如同反相器一樣,在邏輯轉換的瞬間同一時間內(nèi)必定只有一種晶體管(NMOS或是PMOS)處在導通的狀態(tài)下,另一種必定是截止狀態(tài),這使得從電源端到接地端不會有直接導通的路徑,大量節(jié)省了電流或功率的消耗,也降低了集成電路的發(fā)熱量。垂直式功率MOSFET多半用來做開關切換之用。
常用于MOSFET的電路符號有很多種變化, 常見的設計是以一條直線 通道,兩條和通道垂直的線 源極與漏極,左方和通道平行而且較短的線 柵極,如下圖所示。有時也會將 通道的直線以破折線代替,以區(qū)分增強型MOSFET(enhancement mode MOSFET)或是耗盡型MOSFET(depletion mode MOSFET)另外又分為NMOSFET和PMOSFET兩種類型,電路符號如圖所示(箭頭的方向不同)。由于集成電路芯片上的MOSFET為四端元件,所以除了柵極、源極、漏極外,尚有一基極(Bulk或是Body)。MOSFET電路符號中,從通道往右延伸的箭號方向則可表示此元件為N型或是P型的MOSFET。箭頭方向永遠從P端指向N端,所以箭頭從通道指向基極端的為P型的MOSFET,或簡稱PMOS( 此元件的通道為P型)為什么MOSFET的尺寸能越小越好?太倉高壓N管MOSFET設計
隨著MOSFET技術的不斷演進,現(xiàn)在的CMOS技術也已經(jīng)可以符合很多模擬電路的規(guī)格需求。西安低壓N+PMOSFET設計
不同耐壓的MOSFET,其導通電阻中各部分電阻比例分布也不同。如耐壓30V的MOSFET,其外延層電阻單為 總導通電阻的29%,耐壓600V的MOSFET的外延層電阻則是總導通電阻的96.5%。由此可以推斷耐壓800V的MOSFET的導通電阻將幾乎被外 延層電阻占據(jù)。欲獲得高阻斷電壓,就必須采用高電阻率的外延層,并增厚。這就是常規(guī)高壓MOSFET結構所導致的高導通電阻的根本原因。增加管芯面積雖能降低導通電阻,但成本的提高所付出的代價是商業(yè)品所不允許的。引入少數(shù)載流子導電雖能降低導通壓降,但付出的代價是開關速度的降低并出現(xiàn)拖尾電流,開關損耗增加,失去了MOSFET的高速的優(yōu)點。以上兩種辦法不能降低高壓MOSFET的導通電阻,所剩的思路就是如何將阻斷高電壓的低摻雜、高電阻率區(qū)域和導電通道的高摻雜、低電阻率分開解決。如除 導通時低摻雜的高耐壓外延層對導通電阻只能起增大作用外并無其他用途。這樣,是否可以將導電通道以高摻雜較低電阻率實現(xiàn),而在MOSFET關斷時,設法使這個通道以某種方式夾斷,使整個器件耐壓單取決于低摻雜的N-外延層。西安低壓N+PMOSFET設計
上海光宇睿芯微電子有限公司致力于數(shù)碼、電腦,以科技創(chuàng)新實現(xiàn)高品質(zhì)管理的追求。光宇睿芯微電子擁有一支經(jīng)驗豐富、技術創(chuàng)新的專業(yè)研發(fā)團隊,以高度的專注和執(zhí)著為客戶提供MOSFET場效應管,ESD保護器件,穩(wěn)壓管價格,傳感器。光宇睿芯微電子不斷開拓創(chuàng)新,追求出色,以技術為先導,以產(chǎn)品為平臺,以應用為重點,以服務為保證,不斷為客戶創(chuàng)造更高價值,提供更優(yōu)服務。光宇睿芯微電子始終關注自身,在風云變化的時代,對自身的建設毫不懈怠,高度的專注與執(zhí)著使光宇睿芯微電子在行業(yè)的從容而自信。