JordanBlockMatrix 構(gòu)造約當(dāng)塊矩陣JordanForm 將矩陣約化為約當(dāng)型KroneckerProduct 構(gòu)造兩個(gè)矩陣的 Kronecker 張量積LeastSquares 方程的**小二乘解LinearSolve 求解線性方程組 A . x = bLUDecomposition 計(jì)算矩陣的 Cholesky,PLU 或 PLU1R 分解Map 將一個(gè)程序映射到一個(gè)表達(dá)式上,對(duì)矩陣和向量在原位置上進(jìn)行處理MatrixAdd 計(jì)算兩個(gè)矩陣的線性組合VectorAdd 計(jì)算兩個(gè)向量的線性組合MatrixExponential 確定一個(gè)矩陣 A 的矩陣指數(shù) exp(A)Matrix...
Octave的**由一組內(nèi)置的(built-in)矩陣運(yùn)算語言(如四則運(yùn)算)和可加載函數(shù)(Loadable Function)組成(例如求矩陣逆inv),其余能在**語言之上實(shí)現(xiàn)而且性能開銷不會(huì)***增加的函數(shù)調(diào)用則一般以O(shè)ctave腳本的形式存在(例如求解方程組的fsolve函數(shù))。Octave解釋器會(huì)自動(dòng)處理各種不同類型的調(diào)用。Octave支持?jǐn)?shù)據(jù)建構(gòu),也支持基本的面向?qū)ο缶幊?,但通常仍把它?dāng)作面向過程的程序設(shè)計(jì)語言來看待。它的語法基本上與Matlab一致,嚴(yán)謹(jǐn)編寫的代碼應(yīng)同時(shí)可在Matlab及Octave運(yùn)行。但若調(diào)用了Matlab工具包,則一般不能直接在Octave上運(yùn)行,因?yàn)镺cta...
第12章級(jí)數(shù)12.1 冪級(jí)數(shù)的階數(shù)Order - 階數(shù)項(xiàng)函數(shù)order - 確定級(jí)數(shù)的截?cái)嚯A數(shù)12.2 常見級(jí)數(shù)展開series - 一般的級(jí)數(shù)展開taylor - Taylor 級(jí)數(shù)展開mtaylor - 多元Taylor級(jí)數(shù)展開poisson - Poisson級(jí)數(shù)展開.26812.3 其它級(jí)數(shù)eulermac - Euler-Maclaurin求和piecewise - 分段連續(xù)函數(shù)asympt - 漸進(jìn)展開第13章 特殊函數(shù)AiryAi, AiryBi - Airy 波動(dòng)函數(shù)AiryAiZeros, AiryBiZeros - Airy函數(shù)的實(shí)數(shù)零點(diǎn)AngerJ, WeberE - A...
Octave是一種編程語言,旨在解決線性和非線性的數(shù)值計(jì)算問題。Octave為GNU項(xiàng)目下的開源軟件,早期版本為命令行交互方式,4.0.0版本發(fā)布基于QT編寫的GUI交互界面。Octave語法與Matlab語法非常接近,可以很容易的將matlab程序移植到Octave。同時(shí)與C++,QT等接口較Matlab更加方便。Octave是一種科學(xué)計(jì)算軟件,旨在提供與Matlab語法兼容的開放源代碼科學(xué)計(jì)算及數(shù)值分析的工具;它同時(shí)也是GNU項(xiàng)目成員之一。操作界面。 [1]系統(tǒng)性開發(fā)則是由John W. Eaton在1992年接手才開始的。 ***個(gè)alpha測(cè)試版是在1993年1月4日發(fā)布,1.0穩(wěn)定版...
Maple [2]不僅*提供編程工具,更重要的是提供數(shù)學(xué)知識(shí)。Maple [3]是教授、研究員、科學(xué)家、工程師、學(xué)生們必備的科學(xué)計(jì)算工具,從簡(jiǎn)單的數(shù)字計(jì)算到高度復(fù)雜的非線性問題,Maple都可以幫助您快速、高效地解決問題。用戶通過Maple [4]產(chǎn)品可以在單一的環(huán)境中完成多領(lǐng)域物理系統(tǒng)建模和仿真、符號(hào)計(jì)算、數(shù)值計(jì)算、程序設(shè)計(jì)、技術(shù)文件、報(bào)告演示、算法開發(fā)、外部程序連接等功能,滿足各個(gè)層次用戶的需要,從高中學(xué)生到高級(jí)研究人員。Maple、Mathematica和MATLAB并稱為三大數(shù)學(xué)軟件。簡(jiǎn)介:這些是高級(jí)編程語言,也常用于科學(xué)計(jì)算。崇明區(qū)怎樣科學(xué)計(jì)算軟件24小時(shí)服務(wù)科學(xué)計(jì)算軟件:探索數(shù)字世...
開源與協(xié)作:開源社區(qū)的發(fā)展推動(dòng)了科學(xué)計(jì)算軟件的快速迭代和優(yōu)化。開發(fā)者可以通過共享代碼、協(xié)作開發(fā)等方式,加速技術(shù)的創(chuàng)新和應(yīng)用??缙脚_(tái)與兼容性:隨著IoT設(shè)備的普及,科學(xué)計(jì)算軟件需要適應(yīng)多種終端設(shè)備的運(yùn)行需求。因此,跨平臺(tái)整合和兼容性成為軟件發(fā)展的重要方向。四、科學(xué)計(jì)算軟件的影響與挑戰(zhàn)科學(xué)計(jì)算軟件的發(fā)展對(duì)人類社會(huì)產(chǎn)生了深遠(yuǎn)的影響。它不僅提高了科研和工程設(shè)計(jì)的效率,還推動(dòng)了教育、金融、醫(yī)療等多個(gè)領(lǐng)域的創(chuàng)新發(fā)展。然而,隨著技術(shù)的不斷進(jìn)步,科學(xué)計(jì)算軟件也面臨著一些挑戰(zhàn)。例如,如何保障數(shù)據(jù)的安全性和隱私性、如何降低軟件的復(fù)雜性和學(xué)習(xí)成本、如何適應(yīng)不斷變化的用戶需求等。這些問題需要開發(fā)者、用戶以及相關(guān)政策制...
simplify/GAMMA - 利用GAMMA 函數(shù)進(jìn)行化簡(jiǎn)simplify/RootOf - 用RootOf 函數(shù)化簡(jiǎn)表達(dá)式simplify/wronskian - 化簡(jiǎn)含wronskian標(biāo)識(shí)符的表達(dá)式simplify/hypergeom - 化簡(jiǎn)超越函數(shù)表達(dá)式simplify/ln - 化簡(jiǎn)含有對(duì)數(shù)的表達(dá)式simplify/piecewise - 化簡(jiǎn)分段函數(shù)表達(dá)式simplify/polar - 化簡(jiǎn)含有極坐標(biāo)形式的復(fù)數(shù)型表達(dá)式simplify/power - 化簡(jiǎn)含冪次的表達(dá)式simplify/radical - 化簡(jiǎn)含有根式的表達(dá)式simplify/rtable - 化簡(jiǎn)rtab...
QRDecomposition QR 分解RandomMatrix 構(gòu)造隨機(jī)矩陣RandomVector 構(gòu)造隨機(jī)向量Rank 計(jì)算矩陣的秩Row 返回矩陣的一個(gè)行向量序列Column 返回矩陣的一個(gè)列向量序列RowOperation 對(duì)矩陣作初等行變換ColumnOperation 對(duì)矩陣作出等列變換RowSpace 返回矩陣行空間的一組基ColumnSpace 返回矩陣列空間的一組基ScalarMatrix 構(gòu)造一個(gè)單位矩陣的數(shù)量倍數(shù)ScalarVector 構(gòu)造一個(gè)單位向量的數(shù)量倍數(shù)ScalarMultiply 矩陣與數(shù)的乘積MatrixScalarMultiply 計(jì)算矩陣與數(shù)的乘積V...
★ 提供世界上**強(qiáng)大的符號(hào)計(jì)算和高性能數(shù)值計(jì)算引擎,包括世界上**強(qiáng)大的微分方程求解器(ODEs,PDEs,高指數(shù)DAEs)?!?智能自動(dòng)算法選擇?!?強(qiáng)大、靈活、容易使用的編程語言,讓您能夠開發(fā)更復(fù)雜的模型或算法?!?與多學(xué)科復(fù)雜系統(tǒng)建模和仿真平臺(tái)MapleSim緊密集成。技術(shù)文件環(huán)境★ 大量易學(xué)易用的工具和特征,提供“數(shù)學(xué)版office”工作環(huán)境,用戶即使沒有任何語法知識(shí)也可以完成大量數(shù)學(xué)問題的計(jì)算,***地縮短學(xué)習(xí)時(shí)間?!锛夹g(shù)文件界面組合文字、數(shù)學(xué)、圖形、聲音、建模、科學(xué)計(jì)算等您所有的工作。應(yīng)用:適用于各種數(shù)學(xué)和科學(xué)領(lǐng)域的計(jì)算,如物理學(xué)、化學(xué)、工程學(xué)等。虹口區(qū)定制科學(xué)計(jì)算軟件24小時(shí)服...
14.4 惰性函數(shù)Det - 惰性行列式運(yùn)算符Eigenvals - 數(shù)值型矩陣的特征值和特征向量Hermite, Smith - 矩陣的Hermite 和Smith 標(biāo)準(zhǔn)型14.5 LinearAlgebra函數(shù)Matrix 定義矩陣Add 加/減矩陣Adjoint 伴隨矩陣BackwardSubstitute 求解 A . X = B,其中 A 為上三角型行階梯矩陣BandMatrix 帶狀矩陣Basis 返回向量空間的一組基SumBasis 返回向量空間直和的一組基IntersectionBasis 返回向量空間交的一組基BezoutMatrix 構(gòu)造兩個(gè)多項(xiàng)式的 Bezout 矩陣Bi...
resultant - 計(jì)算兩個(gè)多項(xiàng)式的終結(jié)式bernoulli - Bernoulli 數(shù)和多項(xiàng)式bernstein - 用Bernstein多項(xiàng)式近似一個(gè)函數(shù)content, primpart - 一個(gè)多元的多項(xiàng)式的內(nèi)容和主部degree, ldegree - 一個(gè)多項(xiàng)式的比較高次方/比較低次方divide - 多項(xiàng)式的精確除法euler - Euler 數(shù)和多項(xiàng)式icontent - 多項(xiàng)式的整數(shù)部分interp - 多項(xiàng)式的插值prem, sprem - 多項(xiàng)式的pseudo 余數(shù)和稀疏pseudo 余數(shù)randpoly - 隨機(jī)多項(xiàng)式生成器spline - 計(jì)算自然樣條函數(shù)第8章 有...
resultant - 計(jì)算兩個(gè)多項(xiàng)式的終結(jié)式bernoulli - Bernoulli 數(shù)和多項(xiàng)式bernstein - 用Bernstein多項(xiàng)式近似一個(gè)函數(shù)content, primpart - 一個(gè)多元的多項(xiàng)式的內(nèi)容和主部degree, ldegree - 一個(gè)多項(xiàng)式的比較高次方/比較低次方divide - 多項(xiàng)式的精確除法euler - Euler 數(shù)和多項(xiàng)式icontent - 多項(xiàng)式的整數(shù)部分interp - 多項(xiàng)式的插值prem, sprem - 多項(xiàng)式的pseudo 余數(shù)和稀疏pseudo 余數(shù)randpoly - 隨機(jī)多項(xiàng)式生成器spline - 計(jì)算自然樣條函數(shù)第8章 有...
Maple [2]是世界上**為通用的數(shù)學(xué)和工程計(jì)算軟件之一,在數(shù)學(xué)和科學(xué)領(lǐng)域享有盛譽(yù),有“數(shù)學(xué)家的軟件”之稱。Maple 在全球擁有數(shù)百萬用戶,被***地應(yīng)用于科學(xué)、工程和教育等領(lǐng)域,用戶滲透超過96%的世界主要高校和研究所,超過81%的世界財(cái)富五**企業(yè)。Maple系統(tǒng)內(nèi)置高級(jí)技術(shù)解決建模和仿真中的數(shù)學(xué)問題,包括世界上**強(qiáng)大的符號(hào)計(jì)算、無限精度數(shù)值計(jì)算、創(chuàng)新的互聯(lián)網(wǎng)連接、強(qiáng)大的4GL語言等,內(nèi)置超過5000個(gè)計(jì)**令,數(shù)學(xué)和分析功能覆蓋幾乎所有的數(shù)學(xué)分支,如微積分、微分方程、特殊函數(shù)、線性代數(shù)、圖像聲音處理、統(tǒng)計(jì)、動(dòng)力系統(tǒng)等。在金融分析領(lǐng)域,科學(xué)計(jì)算軟件能夠處理大量的市場(chǎng)數(shù)據(jù),幫助投資者...
Octave是一種編程語言,旨在解決線性和非線性的數(shù)值計(jì)算問題。Octave為GNU項(xiàng)目下的開源軟件,早期版本為命令行交互方式,4.0.0版本發(fā)布基于QT編寫的GUI交互界面。Octave語法與Matlab語法非常接近,可以很容易的將matlab程序移植到Octave。同時(shí)與C++,QT等接口較Matlab更加方便。Octave是一種科學(xué)計(jì)算軟件,旨在提供與Matlab語法兼容的開放源代碼科學(xué)計(jì)算及數(shù)值分析的工具;它同時(shí)也是GNU項(xiàng)目成員之一。操作界面。 [1]系統(tǒng)性開發(fā)則是由John W. Eaton在1992年接手才開始的。 ***個(gè)alpha測(cè)試版是在1993年1月4日發(fā)布,1.0穩(wěn)定版...
★ Simulink:輸入和輸出Simulink模塊,添加Maple的分析和優(yōu)化功能到Simulink模塊。其他附加產(chǎn)品MapleSim:高性能、多領(lǐng)域復(fù)雜系統(tǒng)建模和仿真Global Optimization Toolbox:全局優(yōu)化工具箱MapleSim Simulink Connector:MapleSim-Simulink接口工具箱MapleSim Control Design Toolbox:MapleSim控制設(shè)計(jì)工具箱MapleSim Tire Component Library:MapleSim輪胎元件模型庫MapleSim LabVIEW Connector:MapleSim-...
RootOf - 方程根的表示surd - 非主根函數(shù)roots - 一個(gè)多項(xiàng)式對(duì)一個(gè)變量的精確根turm, sturmseq - 多項(xiàng)式在區(qū)間上的實(shí)數(shù)根數(shù)和實(shí)根序列4.4 解方程eliminate - 消去一個(gè)方程組中的某些變量isolve - 求解方程的整數(shù)解solvefor - 求解一個(gè)方程組的一個(gè)或者多個(gè)變量isolate - 隔離一個(gè)方程左邊的一個(gè)子表達(dá)式singular - 尋找一個(gè)表達(dá)式的極點(diǎn)solve/identity - 求解包含屬性的表達(dá)式solve/ineqs - 求解不等式solve/linear - 求解線性方程組solve/radical - 求解含有未知量根式的方...
9.3 微分計(jì)算D - 微分算子D, diff - 運(yùn)算符D 和函數(shù)diffdiff, Diff - 微分或者偏微分convert/D - 將含導(dǎo)數(shù)表達(dá)式轉(zhuǎn)換為D運(yùn)算符表達(dá)式convert/diff - 將D(f)(x)表達(dá)式轉(zhuǎn)換為diff(f(x),x)的形式implicitdiff - 由一個(gè)方程定義一個(gè)函數(shù)的微分9.4 積分計(jì)算Si, Ci … - 三角和雙曲積分Dirac, Heaviside - Dirac 函數(shù)/Heaviside階梯函數(shù)Ei - 指數(shù)積分Elliptic -橢圓積分FresnelC, … - Fresnel 正弦,余弦積分和輔助函數(shù)int, Int - 定積分和不...
dsolve - 求解ODEs 方程組odetest - 從ODE 求解器中測(cè)試結(jié)果是顯式或者隱式類型10.3 偏微分方程求解pdsolve - 尋找偏微分方程 (PDEs) 的解析解第11章 數(shù)值計(jì)算11.1 MAPLE 中的數(shù)值計(jì)算環(huán)境IEEE 標(biāo)準(zhǔn)和Maple數(shù)值計(jì)算數(shù)據(jù)類型特殊值環(huán)境變量11.2 算法標(biāo)準(zhǔn)算法復(fù)數(shù)算法含有0,無窮和未定義數(shù)的算法11.3 數(shù)據(jù)構(gòu)造器254complex - 復(fù)數(shù)和復(fù)數(shù)構(gòu)造器Float, … - 浮點(diǎn)數(shù)及其構(gòu)造器Fraction - 分?jǐn)?shù)及其的構(gòu)造器integer - 整數(shù)和整數(shù)構(gòu)造器11.4 MATLAB軟件包簡(jiǎn)介11.5 “”區(qū)間類型表達(dá)式在醫(yī)學(xué)圖像處...
***計(jì)算器(Graphing Calculator - MathPac)是一款功能強(qiáng)大的計(jì)算器,由美國***的數(shù)學(xué)**親自驗(yàn)證,功能強(qiáng)大,滿足從小學(xué)到大學(xué)的所有學(xué)生、教師的需要。***計(jì)算器(GraphingCalculator-MathPac)是一款功能強(qiáng)大的計(jì)算器,由美國***的數(shù)學(xué)**親自驗(yàn)證,功能強(qiáng)大,滿足從小學(xué)到大學(xué)的所有學(xué)生、教師的需要。涉及數(shù)學(xué)領(lǐng)域非常深,包含積分、極限、作圖、多元函數(shù)、矩陣、回歸計(jì)算、解方程、求交點(diǎn)、截距……功能強(qiáng)大、效果華麗,自然內(nèi)嵌了普通的所謂的科學(xué)計(jì)算器,在你不需要華麗功能的時(shí)候也可以使用,是替代系統(tǒng)自帶計(jì)算器的優(yōu)先。***計(jì)算器***計(jì)算器***計(jì)算器...
開源與協(xié)作:開源社區(qū)的發(fā)展推動(dòng)了科學(xué)計(jì)算軟件的快速迭代和優(yōu)化。開發(fā)者可以通過共享代碼、協(xié)作開發(fā)等方式,加速技術(shù)的創(chuàng)新和應(yīng)用。跨平臺(tái)與兼容性:隨著IoT設(shè)備的普及,科學(xué)計(jì)算軟件需要適應(yīng)多種終端設(shè)備的運(yùn)行需求。因此,跨平臺(tái)整合和兼容性成為軟件發(fā)展的重要方向。四、科學(xué)計(jì)算軟件的影響與挑戰(zhàn)科學(xué)計(jì)算軟件的發(fā)展對(duì)人類社會(huì)產(chǎn)生了深遠(yuǎn)的影響。它不僅提高了科研和工程設(shè)計(jì)的效率,還推動(dòng)了教育、金融、醫(yī)療等多個(gè)領(lǐng)域的創(chuàng)新發(fā)展。然而,隨著技術(shù)的不斷進(jìn)步,科學(xué)計(jì)算軟件也面臨著一些挑戰(zhàn)。例如,如何保障數(shù)據(jù)的安全性和隱私性、如何降低軟件的復(fù)雜性和學(xué)習(xí)成本、如何適應(yīng)不斷變化的用戶需求等。這些問題需要開發(fā)者、用戶以及相關(guān)政策制...
Maple [2]不僅*提供編程工具,更重要的是提供數(shù)學(xué)知識(shí)。Maple [3]是教授、研究員、科學(xué)家、工程師、學(xué)生們必備的科學(xué)計(jì)算工具,從簡(jiǎn)單的數(shù)字計(jì)算到高度復(fù)雜的非線性問題,Maple都可以幫助您快速、高效地解決問題。用戶通過Maple [4]產(chǎn)品可以在單一的環(huán)境中完成多領(lǐng)域物理系統(tǒng)建模和仿真、符號(hào)計(jì)算、數(shù)值計(jì)算、程序設(shè)計(jì)、技術(shù)文件、報(bào)告演示、算法開發(fā)、外部程序連接等功能,滿足各個(gè)層次用戶的需要,從高中學(xué)生到高級(jí)研究人員。Maple、Mathematica和MATLAB并稱為三大數(shù)學(xué)軟件。大數(shù)據(jù)技術(shù)的整合使得軟件能夠處理更加復(fù)雜、龐大的數(shù)據(jù)集,提高計(jì)算的準(zhǔn)確性和效率。楊浦區(qū)怎樣科學(xué)計(jì)算軟件...
Beta - Beta函數(shù)EllipticModulus - 模數(shù)函數(shù)k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函數(shù)GaussAGM - Gauss 算術(shù)的幾何平均數(shù)JacobiAM, ., - Jacobi 振幅函數(shù)和橢圓函數(shù)JacobiTheta1, JacobiTheta4 - Jacobi theta函數(shù)JacobiZeta - Jacobi 的Zeta函數(shù)KelvinBer, KelvinBei - Kelvin函數(shù)KummerM, - Kummer M函數(shù)和U函數(shù)LambertW - LambertW函數(shù)LerchPhi - 一般的Lerch Phi函數(shù)Lom...
***計(jì)算器(Graphing Calculator - MathPac)是一款功能強(qiáng)大的計(jì)算器,由美國***的數(shù)學(xué)**親自驗(yàn)證,功能強(qiáng)大,滿足從小學(xué)到大學(xué)的所有學(xué)生、教師的需要。***計(jì)算器(GraphingCalculator-MathPac)是一款功能強(qiáng)大的計(jì)算器,由美國***的數(shù)學(xué)**親自驗(yàn)證,功能強(qiáng)大,滿足從小學(xué)到大學(xué)的所有學(xué)生、教師的需要。涉及數(shù)學(xué)領(lǐng)域非常深,包含積分、極限、作圖、多元函數(shù)、矩陣、回歸計(jì)算、解方程、求交點(diǎn)、截距……功能強(qiáng)大、效果華麗,自然內(nèi)嵌了普通的所謂的科學(xué)計(jì)算器,在你不需要華麗功能的時(shí)候也可以使用,是替代系統(tǒng)自帶計(jì)算器的優(yōu)先。***計(jì)算器***計(jì)算器***計(jì)算器...
《Maple 指令》7.0版本第1章 章數(shù)1.1 復(fù)數(shù)Re,Im - 返回復(fù)數(shù)型表達(dá)式的實(shí)部/虛部abs -***值函數(shù)argument - 復(fù)數(shù)的幅角函數(shù)conjugate - 返回共軛復(fù)數(shù)csgn - 實(shí)數(shù)和復(fù)數(shù)表達(dá)式的符號(hào)函數(shù)signum - 實(shí)數(shù)和復(fù)數(shù)表達(dá)式的sign 函數(shù)51.2 MAPLE 常數(shù)已知的變量名稱指數(shù)常數(shù)(以自然對(duì)數(shù)為底)I - x^2 = -1 的根infinity 無窮大1.3 整數(shù)函數(shù)! - 階乘函數(shù)irem, iquo - 整數(shù)的余數(shù)/商isprime - 素?cái)?shù)測(cè)試isqrfree - 無整數(shù)平方的因數(shù)分解max, min - 數(shù)的最大值/最小值mod, mod...
CharacteristicPolynomial 構(gòu)造矩陣的特征多項(xiàng)式CompanionMatrix 構(gòu)造一個(gè)首一(或非首一)多項(xiàng)式或矩陣多項(xiàng)式的友矩陣(束)ConditionNumber 計(jì)算矩陣關(guān)于某范數(shù)的條件數(shù)ConstantMatrix 構(gòu)造常數(shù)矩陣ConstantVector 構(gòu)造常數(shù)向量Copy 構(gòu)造矩陣或向量的一份復(fù)制CreatePermutation 將一個(gè) NAG 主元向量轉(zhuǎn)換為一個(gè)置換向量或矩陣CrossProduct 向量的叉積`&x` 向量的叉積DeleteRow 刪除矩陣的行DeleteColumn刪除矩陣的列Determinant 行列式Diagonal 返回從矩陣...
1.4 素?cái)?shù)Randpoly, Randprime - 有限域的隨機(jī)多項(xiàng)式/首一素?cái)?shù)多項(xiàng)式ithprime - 確定第 i 個(gè)素?cái)?shù)nextprime, prevprime - 確定下一個(gè)比較大/**小素?cái)?shù)1.5 數(shù)的進(jìn)制轉(zhuǎn)換convert/base - 基數(shù)之間的轉(zhuǎn)換convert/binary - 轉(zhuǎn)換為二進(jìn)制形式convert/decimal - 轉(zhuǎn)換為 10 進(jìn)制convert/double - 將雙精度浮點(diǎn)數(shù)由一種形式轉(zhuǎn)換為另一種形式convert/float - 轉(zhuǎn)換為浮點(diǎn)數(shù)convert/hex - 轉(zhuǎn)換為十六進(jìn)制形式convert/metric - 轉(zhuǎn)換為公制單位convert/...
expand -表達(dá)式展開Expand - 展開表達(dá)式的惰性形式expandoff/expandon - 抑制/不抑制函數(shù)展開5.2 因式分解Afactor - ***因式分解的惰性形式Afactors - ***因式分解分解項(xiàng)列表的惰性形式Berlekamp - 因式分解的Berlekamp 顯式度factor - 多元的多項(xiàng)式的因式分解factors - 多元多項(xiàng)式的因式分解列表Factor - 函數(shù)factor 的惰性形式Factors - 函數(shù)factors 的惰性形式polytools[splits] - 多項(xiàng)式的完全因式分解第6章 化簡(jiǎn)6.1 表達(dá)式化簡(jiǎn)118simplify - ...
student[changevar] - 變量代換dawson - Dawson 積分ellipsoid - 橢球體的表面積evalf(int) - 數(shù)值積分intat, Intat - 在一個(gè)點(diǎn)上積分求值第10章 微分方程10.1 微分方程分類odeadvisor - ODE-求解分析器DESol - 表示微分方程解的數(shù)據(jù)結(jié)構(gòu)pdetest - 測(cè)試pdsolve 能找到的偏微分方程(PDEs)解10.2 常微分方程求解solve - 求解常微方程 (ODE)dsolve - 用給定的初始條件求解ODE 問題dsolve/inttrans - 用積分變換方法求解常微分方程dsolve/num...
expand -表達(dá)式展開Expand - 展開表達(dá)式的惰性形式expandoff/expandon - 抑制/不抑制函數(shù)展開5.2 因式分解Afactor - ***因式分解的惰性形式Afactors - ***因式分解分解項(xiàng)列表的惰性形式Berlekamp - 因式分解的Berlekamp 顯式度factor - 多元的多項(xiàng)式的因式分解factors - 多元多項(xiàng)式的因式分解列表Factor - 函數(shù)factor 的惰性形式Factors - 函數(shù)factors 的惰性形式polytools[splits] - 多項(xiàng)式的完全因式分解第6章 化簡(jiǎn)6.1 表達(dá)式化簡(jiǎn)118simplify - ...
第12章級(jí)數(shù)12.1 冪級(jí)數(shù)的階數(shù)Order - 階數(shù)項(xiàng)函數(shù)order - 確定級(jí)數(shù)的截?cái)嚯A數(shù)12.2 常見級(jí)數(shù)展開series - 一般的級(jí)數(shù)展開taylor - Taylor 級(jí)數(shù)展開mtaylor - 多元Taylor級(jí)數(shù)展開poisson - Poisson級(jí)數(shù)展開.26812.3 其它級(jí)數(shù)eulermac - Euler-Maclaurin求和piecewise - 分段連續(xù)函數(shù)asympt - 漸進(jìn)展開第13章 特殊函數(shù)AiryAi, AiryBi - Airy 波動(dòng)函數(shù)AiryAiZeros, AiryBiZeros - Airy函數(shù)的實(shí)數(shù)零點(diǎn)AngerJ, WeberE - A...