Octave是一種編程語言,旨在解決線性和非線性的數(shù)值計(jì)算問題。Octave為GNU項(xiàng)目下的開源軟件,早期版本為命令行交互方式,4.0.0版本發(fā)布基于QT編寫的GUI交互界面。Octave語法與Matlab語法非常接近,可以很容易的將matlab程序移植到Octave。同時(shí)與C++,QT等接口較Matlab更加方便。Octave是一種科學(xué)計(jì)算軟件,旨在提供與Matlab語法兼容的開放源代碼科學(xué)計(jì)算及數(shù)值分析的工具;它同時(shí)也是GNU項(xiàng)目成員之一。操作界面。 [1]系統(tǒng)性開發(fā)則是由John W. Eaton在1992年接手才開始的。 ***個(gè)alpha測(cè)試版是在1993年1月4日發(fā)布,1.0穩(wěn)定版則是在1994年2月17日發(fā)布。簡(jiǎn)介:這些是高級(jí)編程語言,也常用于科學(xué)計(jì)算。黃浦區(qū)特色科學(xué)計(jì)算軟件比較
★ 工作過程包括**初的草稿、計(jì)算、深度分析、演示報(bào)告、共享,以及重用?!?專業(yè)出版工具包括文件處理工具,可輸出Maple文件為PDF、HTML、XML、Word、LaTeX、和MathML格式文件?!?特有的教育功能包,包含特定主題的計(jì)算方法信息和Step-by-Step求解步驟。★ 使用MapleNET發(fā)布交互式內(nèi)容到web上,將您的工作交互式呈現(xiàn)給您的同事、學(xué)生、和同行。外部程序連接無縫集成到您現(xiàn)有的工具鏈中★ OpenMaple API - 在外部程序中使用Maple作為計(jì)算引擎,或者通過External calling,在Maple中使用外部程序,如C/Java/Fortran。閔行區(qū)怎樣科學(xué)計(jì)算軟件設(shè)計(jì)科學(xué)計(jì)算軟件的應(yīng)用范圍廣泛,幾乎涵蓋了所有需要精確計(jì)算的領(lǐng)域。
convert/exp - 將trig 函數(shù)轉(zhuǎn)換為指數(shù)函數(shù)convert/ln - 將arctrig 轉(zhuǎn)換為對(duì)數(shù)函數(shù)polar - 轉(zhuǎn)換為極坐標(biāo)形式convert/radians - 將度轉(zhuǎn)換為弧度convert/sincos - 將trig 函數(shù)轉(zhuǎn)換為sin, cos, sinh, coshconvert/tan - 將trig 函數(shù)轉(zhuǎn)換為tanconvert/trig - 將指數(shù)函數(shù)轉(zhuǎn)換為三角函數(shù)和雙曲函數(shù)第3章 求值3.1 假設(shè)功能3.2 求值Eval - 對(duì)一個(gè)表達(dá)式求值eval - 求值evala - 在代數(shù)數(shù)(或者函數(shù))域求值evalb - 按照一個(gè)布爾表達(dá)式求值evalc - 在復(fù)數(shù)域上符號(hào)求值evalf - 使用浮點(diǎn)算法求值evalhf - 用硬件浮點(diǎn)數(shù)算法對(duì)表達(dá)式求值
MatrixMatrixMultiply 計(jì)算兩個(gè)矩陣的乘積MatrixVectorMultiply 計(jì)算一個(gè)矩陣和一個(gè)列向量的乘積VectorMatrixMultiply 計(jì)算一個(gè)行向量和一個(gè)矩陣的乘積MatrixPower 矩陣的冪MinimalPolynomial 構(gòu)造矩陣的**小多項(xiàng)式Minor 計(jì)算矩陣的子式Multiply 矩陣相乘Norm 計(jì)算矩陣或向量的p-范數(shù)MatrixNorm 計(jì)算矩陣的p-范數(shù)VectorNorm 計(jì)算向量的p-范數(shù)Normalize 向量正規(guī)化NullSpace 計(jì)算矩陣的零度零空間OuterProductMatrix 兩個(gè)向量的外積Permanent 方陣的不變量Pivot 矩陣元素的主元消去法PopovForm Popov 正規(guī)型在科學(xué)研究和工程技術(shù)中,科學(xué)計(jì)算軟件已成為不可或缺的工具。
第12章級(jí)數(shù)12.1 冪級(jí)數(shù)的階數(shù)Order - 階數(shù)項(xiàng)函數(shù)order - 確定級(jí)數(shù)的截?cái)嚯A數(shù)12.2 常見級(jí)數(shù)展開series - 一般的級(jí)數(shù)展開taylor - Taylor 級(jí)數(shù)展開mtaylor - 多元Taylor級(jí)數(shù)展開poisson - Poisson級(jí)數(shù)展開.26812.3 其它級(jí)數(shù)eulermac - Euler-Maclaurin求和piecewise - 分段連續(xù)函數(shù)asympt - 漸進(jìn)展開第13章 特殊函數(shù)AiryAi, AiryBi - Airy 波動(dòng)函數(shù)AiryAiZeros, AiryBiZeros - Airy函數(shù)的實(shí)數(shù)零點(diǎn)AngerJ, WeberE - Anger函數(shù)和Weber函數(shù)BesselI, HankelH1, … - Bessel函數(shù)和Hankel函數(shù)BesselJZeros, … - Bessel函數(shù)實(shí)數(shù)零點(diǎn)類軟件通常具備強(qiáng)大的數(shù)值計(jì)算能力,能夠處理包括微分方程、積分方程在內(nèi)的各種數(shù)學(xué)模型。靜安區(qū)挑選科學(xué)計(jì)算軟件推薦
由美國MathWorks公司出品的商業(yè)數(shù)學(xué)軟件,在符號(hào)計(jì)算、圖像處理以及用戶界面友好化方面表現(xiàn)突出。黃浦區(qū)特色科學(xué)計(jì)算軟件比較
WhittakerM - Whittaker 函數(shù)Zeta - Zeta 函數(shù)erf, … - 誤差函數(shù),補(bǔ)充的誤差函數(shù)和虛數(shù)誤差函數(shù)harmonic - 調(diào)和函數(shù)hypergeom - 廣義的超越函數(shù)pochhammer - 一般的pochhammer函數(shù)polylog - 一般的polylogarithm函數(shù)第14章 線性代數(shù)14.1 ALGEBRA(代數(shù))中矩陣,矢量和數(shù)組14.2 LINALG軟件包簡(jiǎn)介14.3數(shù)據(jù)結(jié)構(gòu)矩陣matrices(小寫)矢量vectors(矢量)convert/matrix - 將數(shù)組,列表,Matrix 轉(zhuǎn)換成matrixconvert/vector - 將列表,數(shù)組或Vector 轉(zhuǎn)換成矢量vectorlinalg[matrix] - 生成矩陣matrix(小寫)linalg[vector] - 生成矢量vector(小寫)黃浦區(qū)特色科學(xué)計(jì)算軟件比較
甘茨軟件科技(上海)有限公司在同行業(yè)領(lǐng)域中,一直處在一個(gè)不斷銳意進(jìn)取,不斷制造創(chuàng)新的市場(chǎng)高度,多年以來致力于發(fā)展富有創(chuàng)新價(jià)值理念的產(chǎn)品標(biāo)準(zhǔn),在上海市等地區(qū)的數(shù)碼、電腦中始終保持良好的商業(yè)口碑,成績讓我們喜悅,但不會(huì)讓我們止步,殘酷的市場(chǎng)磨煉了我們堅(jiān)強(qiáng)不屈的意志,和諧溫馨的工作環(huán)境,富有營養(yǎng)的公司土壤滋養(yǎng)著我們不斷開拓創(chuàng)新,勇于進(jìn)取的無限潛力,甘茨軟件供應(yīng)攜手大家一起走向共同輝煌的未來,回首過去,我們不會(huì)因?yàn)槿〉昧艘稽c(diǎn)點(diǎn)成績而沾沾自喜,相反的是面對(duì)競(jìng)爭(zhēng)越來越激烈的市場(chǎng)氛圍,我們更要明確自己的不足,做好迎接新挑戰(zhàn)的準(zhǔn)備,要不畏困難,激流勇進(jìn),以一個(gè)更嶄新的精神面貌迎接大家,共同走向輝煌回來!